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Cluster mean-field study of the parity-conserving phase transition
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The phase transition of the branching and annihilating random walk with even offspring is studied by
N-cluster mean-field approximations on one-dimensional lattices. By allowing the system to reach zero branch-
ing rate a phase transition can be seen for any N< 12. Coherent anomaly extrapolations applied for the series
of approximations results in v, =1.85(3) and 8=0.96(2).
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I. INTRODUCTION

The study of nonequilibrium phase transition universality
classes is one of the most fundamental tasks of statistical
physics [1-6]. Such phenomena may appear in models of
population, epidemics, catalysis, cooperative transport [1],
and enzyme biology [7] for example. For a long time only
the universality class of directed percolation (DP) [8] was
known, but later it turned out that different classes may ap-
pear in other models (for a review see [3]). The most promi-
nent example occurs in one-dimensional systems exhibiting
Z, symmetrical absorbing states [9-13] and parity-
conserving (PC)—explicit or underlying—branching and an-
nihilating random walk with even offspring (BARWe) dy-
namics (A —3A,2A — @) of the dual variables (A) [14-17].
For a review see [18]. This class is also called the directed
Ising, DP2, or generalized voter model class.

However, an understanding of these phenomena involving
a satisfactory solution of the corresponding field theory is
very rare. For BARWe models field theory failed to give
quantitatively precise results in one dimension [17] because
systematic epsilon expansion breaks down due to a second
critical dimension at d.=4/3 below d.=2. Very recently an-
other field theory has been suggested and analyzed by nu-
merical simulation of the Langevin equation for systems ex-
hibiting Z, symmetric absorbing states [19]. Numerical
approximations ranging from simulations [13,15,18,20,21] to
series expansions [22], cluster mean-field approximations
[11,21], and the empty interval method [23] established the
values of critical exponents firmly.

Recently Zhong, ben-Avraham, and Mufioz (ZAM) [23]
constructed a special parity-conserving (PC) reaction-
diffusion model. By studying it up to pair approximations
they claimed that cluster mean-field studies fail to reproduce
the phase transition of the BARWe model if one considers
clusters that are not large enough. Therefore one may arrive
at the conclusion that the cluster mean-field and especially
the site mean-field solutions break down generally in the
case of PC class transitions. However, in that study the
branching attempt probability (o) was fixed to a finite value,
so one should not expect to see the mean-field transition,
which is known to occur at zero branching rate. In the
present study we show that the cluster mean-field approxi-
mation can describe the mean-field transition qualitatively
well even for small cluster sizes if we do not exclude the
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neighborhood of the zero branching rate from the parameter
space. These approximations are performed on one-
dimensional clusters; therefore for large cluster sizes N one
expects to see a convergence toward the PC class transition
at 0.>0. We apply coherent anomaly extrapolations for the
sequence of cluster mean-field results and give estimates for
some exponents of the critical behavior in one dimension.

The interplay of diffusion and fluctuation has already
been shown in many reaction-diffusion models (see, for ex-
ample, [21,24-26]). Although the diffusion is unable to
change the universal behavior it can affect the location of the
transition and even more it can change the stability of a fixed
point in the case of competing reactions [24-26]). To inves-
tigate the possible role of diffusion we also extend the pa-
rameter space by modifying the diffusion rate.

II. THE CLUSTER MEAN-FIELD METHOD

The generalized (cluster) mean-field (GMF) method is an
extension of the usual mean-field calculation obtained by
setting up master equations for n-point configuration prob-
abilities of site variables s; € {A, D},

PASD _ p, s, (1
ot
where the function f depends on the transition rules of {P,}
“block probabilities” at time ¢.
At the level of N-point approximation the correlations are
neglected for n>N, that is, P,(s;,...,s,) is expressed by
using the Bayesian extension process [27-29],

j=n-N
o PGt ooshay)
P,(s1,...,8,) = p—" ) (2)
o Pt osyony)

In principle, 2V—1 parameters are required to define the
probability of all the N-point configurations. This number,
however, is drastically reduced by the following conditions.
In the stationary state the particle distribution is assumed to
be symmetric with respect to translation and reflection. Fur-
thermore, the block probability consistency results in

Pn(Sl, ,Sn) = 2 Pn+1(sl,

Sn+1

’Sn’sn+1),

©2005 The American Physical Society



G. ODOR AND A. SZOLNOKI

Pn(sl’ ’Sn) =2 Pn+l(SO’S1’ ’sn)~
s

0

Here we apply the GMF method for one-dimensional, site
restricted lattice versions of the BARWe. Taking into account
the spatial symmetries in the case of the N=10 GMF ap-
proximation, one has to find the solution of equations of 528
independent variables. This has been achieved with the help
of MATHEMATICA software. We required 20-digit accuracy in
the results and arbitrary precision during the calculations.

It is well known that such approximations predict the
phase structure qualitatively well in one dimension, provided
N is large enough to take into account the relevant interac-
tion terms. For example, N> 1 is needed to take into account
particle diffusion terms, while N>2 was found to be neces-
sary in the case of binary production processes involving pair
induced reactions [4,30]. The GMF is an efficient phase dia-
gram exploration method and although it is set up for the d
=1 lattice in previous cases it provided a qualitatively good
phase diagram for higher dimensional, mean-field versions
as well (see, for example, [31,25,32,33]).

III. THE ZAM MODEL

In [23] Zhong et al. defined a special, one-dimensional,
parity-conserving lattice model in which each site is either
empty or singly occupied. The state of the lattice is updated
asynchronously by the following rules. An occupied site is
chosen randomly and it is tried for diffusion, at rate I" [prob-
ability I'/(I'+Q)], or branching, at rate () [probability
Q/(I'+Q)]; while the time is increased by 1/N, where N is
the number of occupied (active) sites. In a diffusion step the
particle jumps to its randomly chosen nearest neighbor site.
If the site is occupied both particles are annihilated with
probability r. On the other hand the jump is rejected with
probability 1—r. The branching process involves the creation
of two new particles around the neighborhood. If either or
both neighboring sites is previously occupied the target
site(s) becomes empty with probability r. Otherwise the lat-
tice remains unaltered with probability 1—r.

The site mean-field equation for the concentration ¢
(probability of site occupancy) is

ic=—2rc2+2c(1 —c)?=2rc3, (3)

dt
where I'=Q =1 was taken; hence the branching probability is
fixed to 1/2. Similarly the N=2 pair mean-field approxima-
tion was solved and in both cases the system always evolves
to an active phase with finite concentration ¢, (see Fig. 1).
These results were compared with those of the r<<1 rate
model in one dimension, for which a PC class continuous
phase transition is known at r,>0 [15]. The conclusion was
drawn that cluster mean-field approximations of low orders
fail to reproduce the phase diagram; the convergence is very
slow and the calculations are complicated. However, it is
also known that in the mean-field approximation—which is
valid for d>d.=2 dimensions—the phase transition occurs
at zero branching rate [17], so it is not surprising that by
fixing (=1 one does not see a phase transition in the corre-
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FIG. 1. (Color online) GMF results for the steady state concen-
tration in the ZAM model for N=1,2,...,7 clusters (top to
bottom).

sponding mean-field approximations. On the other hand,
Zhong et al. found a phase transition for 0<r.<1 by the
parity interval method—which also involves a mean-field-
like approximation—set up for this one-dimensional model
[23]. The authors acknowledged that it had been possible to
see the phase transition in related PC class models for larger
(N>2) cluster sizes [11].

To clarify this we extended the cluster mean-field method
for higher orders and for other versions of this BARWe
model exhibiting a PC class transition.

We determined the steady state solutions of Eq. (1) taking
into account Egs. (2) and (3) and calculated the correspond-
ing steady state densities c¢,(r) (see Fig. 1). Indeed higher
levels of approximations (N>4) of the ZAM model result in
a phase transition with r.(N)<1 converging toward the
simulation value [r,=0.470(5)].

IV. GMF RESULTS FOR THE MODIFIED ZAM MODEL

As we saw in the preceding section cluster mean-field
approximations of the ZAM model give qualitatively good
phase diagram for N>4 and the steady state solutions con-
verge to the Monte Carlo simulation results. However, going
much further with the GMF study of the ZAM model is time
consuming especially because the numerical root finding of
Eq. (1) gets computationally demanding for large numbers of
variables. On the other hand by modifying the ZAM model
slightly in such a way that zero branching rate is allowed
with the restriction o=20/(I"+Q)=1-r (ZAMB model) one
immediately finds the expected mean-field transition at o,
=0 for N=1.

The site approximation equation for the concentration is

ditc=2c[1+cz(r—1)2—r—c(2—r)], 4)

exhibiting the steady state solution
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FIG. 2. (Color online) Steady state concentration GMF results
for the ZAMB model for N=1,2,3,4,5,6,7,8,10,12 clusters (top
to bottom).

2—r—\r8—11r+4r

= 5
“ 2(r—1) ®
for r<1. For r=1 Eq. (4) simplifies to
d
—c=-2c%, 6
dtc ¢ (©)

resulting in ¢ 1/t particle density decay in agreement with
the mean-field expectations. The supercritical behavior in the
active phase can be characterized by a S=1 leading order
singularity for r.<1,

8 )

and a B8'=2 correction to scaling exponent defined as

Cg & |r—rc

cy=alr—rlP+blr—r]F. (8)

The steady state solution has been determined for N
=1,2,3,4,5,6,7,8,10,12 (see Fig. 2). As one can see even
the pair approximation gives r.(2)=1, but for N>2 the tran-
sition point starts shifting toward the true transition point
r.<1 as expected in one dimension. One can also observe a
concave shape of the curves corresponding to the corrections
to scaling with exponent 8'=2.

A. The effect of diffusion

In previous papers [11,34,31,24-26]) it was shown that
the diffusion strength can cause relevant effects on the phase
diagram of reaction-diffusion models when it competes with
the reactions. This is reflected in the cluster mean-field ap-
proximations in such a way that stronger diffusion “washes
out” fluctuations and causes a transition, which is more site
mean-field-like, while higher N takes into account more fluc-
tuations and hence opposes the effects of the diffusion. Here
we investigated the effect of diffusion by lowering the hop-
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FIG. 3. (Color online) Steady state concentration GMF results
for the ZAMB model for D=0.2 diffusion and N=1,2,3,4,5,6,
7,8,10,12 clusters (top to bottom)

ping probability of the ZAMB model to D=2I'/(I'+Q)
=0.2. The steady state results (Fig. 3) show that the concen-
tration curves arrive with higher slopes at the ¢,=0 axis than
in the case of D=1. This permits us to obtain a(N) more
precisely since the relative error of the amplitudes is smaller
and the quadratic correction to scaling is weaker. As a con-
sequence the numerical root finding is not so much affected
by the basin of attraction of the absorbing state fixed point
solution. Note that in the pair approximation the linear am-
plitudes a(2) are zero.

V. SIMULATION RESULTS
By applying fitting with the expected scaling form
|ro(N) = r '+ = 1IN 9)

to the GMF data one can determine the location of the tran-
sition and v, simultaneously. For D=1 this gives r.=0.402,
while for D=0,2 r,=0.65. However, to obtain better critical
value estimates we used more precise r, values in the fitting
procedure, which can be deduced from simulations.

The simulations were performed on one-dimensional lat-
tices of sizes L=10" with periodic boundary conditions. The
runs were started from half filled lattices with randomly dis-
tributed particles. One elementary Monte Carlo step (MCS)
consists of the following processes. A particle and a direction
are selected randomly. If the nearest neighbour (NN) site in
the selected direction is empty the particle moves to it (with
probability D). If it is filled, both particles are removed (with
probability r). The time—measured in MCSs—is updated by
1/np, where np is the total particle number at time f. To
perform the branching another particle is selected randomly
(with probability 1-r). Depending on the status of the two
NNs (s;_1,5;,1) the following process may occur.

(a) If s5,_;=s;,,=9, two new particles are created.

(b) If 5;_;=s,,;=A the two NN particles are removed with
probability r.
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FIG. 4. (Color online) Particle density decay of the ZAMB
model times the expected critical power law (1°2%). Different
curves correspond to r=0.565,0.562,0.56 and D=0.2, r
=0.408,0.409,0.41 and D=1 (from top to bottom).

(c) If s;_, #s5,,, the NNs are swapped with probability r.
The time (z) is updated by 1/np again. The simulations were
followed up to t=10" MCS or until n,=0 (absorbing state).
The concentration of particles c¢,(z) times the expected den-
sity decay power law 1/c %28 [18,20] is plotted on Fig. 4.
One can read off r,=0.409(1) for D=1 and r,=0.562(1) for
D=0.2. For D=1 this agrees well with the extrapolation re-
sults of Eq. (9) but for D=0.2 the deviation is not negligible.

VI. COHERENT ANOMALY EXTRAPOLATIONS

According to scaling theory the location of the critical
point for sizes N [r.(N)] scales (in the large N limit) as Eq.
(9). Precise extrapolation can be obtained by applying the
critical transition point values of simulation in the mentioned
scaling form. The r.(N) for the Nth level of approximations
was determined by quadratic fitting for ¢,(N) <0.002. Figure
5 shows r.(N) as a function of 1/N. The fit of the form (9)
yields 1/v;=0.54(1) for D=1 and 1/v,=0.53(1) for D
=0.2 (see Fig. 5). The value v, =1.85(3) agrees well with the
value from the literature v, =1.84(6) [20] for this class.

We applied the coherent anomaly method (CAM) [35] for
the N-cluster GMF results to extrapolate to the N— o behav-
ior. This method has been proven to be successful for obtain-
ing critical exponents of nonequilibrium absorbing phase
transitions [11,21,36-38,32,39]. Earlier the GMF+CAM
method was already used for analyzing the PC class transi-
tion of the nonequilibrium kinetic Ising model [11,21] up to
cluster sizes N=<6. That study arrived at the rough estimate
B=1, which agrees with the the series expansion result 3
=1.00(5) [40] and marginally the simulation results B
=0.95(2) [18]. Now we apply this method for cluster sizes
up to N<12 and improve the GMF+CAM results [11,21]
for a model exhibiting the PC class transition. According to
the CAM the amplitudes a(N) of the cluster mean-field sin-
gularities
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FIG. 5. (Color online) CAM extrapolation results for the critical
point 7.(N) (2<N=12). The inset shows |a(N)| (3<N=<12). Stars
correspond to D=1, boxes to D=0.2. Numerical errors are smaller
than the symbol sizes.

¢,(N) = |a(N)||r.(N) = r|Pur (10)
scale in such a way
la(N)| = |r(N) = r |P-Pur (11)

that the exponent of the true singular behavior [Eq. (7)] can
be estimated. The a(N) amplitudes were determined by linear
fitting to the local slopes of the c¢y(N) data in the neighbor-
hood of r.(N). The amplitudes are shown in Table I and in
the inset of Fig. 5. The fitting using the form Eq. (11) for
N>2 data [since a(2)=0] results in 8=0.92(5) for D=1 and
B=0.96(2) for D=0.2. The CAM for D=1 results in a bigger

TABLE I. Summary of results for the ZAMB model.

D

0.2
n rN) la(N)] r(N) la(N)]
1 1 5 1 1
2 1 0 1 0
3 0.9575(2) 0.4124(4) 0.8997(2) 0.094(5)
4 0.9177(1) 0.4155(3) 0.8321(1) 0.100(8)
5 0.8802(4) 0.4167(9) 0.7805(1) 0.103(7)
6 0.8485(1) 0.4192(9) 0.7423(9) 0.104(7)
7 0.8235(1) 0.4254(3) 0.714(7) 0.100(12)
8 0.8044(1) 0.429(3) 0.691(13) 0.103(9)
10 0.7787(1) 0.427(2) 0.6608(1) 0.100(6)
12 0.7633(2) 0.416(2) 0.6394(1) 0.103(6)
T 0.562(1) 0.409(1)
v, 1.88(3) 1.85(3)
B 0.96(2) 0.92(5)

066128-4



CLUSTER MEAN-FIELD STUDY OF THE PARITY-...

numerical error than for D=0.2, because for D=1 the qua-
dratic corrections to scaling are stronger and the ¢ (r) nu-
merical solutions are affected by the attractive basin of the
neighboring absorbing state fixed point. These values agree
well with the simulation results £=0.95(2) [18] and B
=0.94(6) [20] as well as with that of the parity interval
method £=0.92(2) [23].

VII. CONCLUSIONS

We showed that even low order GMF approximations can
describe the phase transition of an even-offspringed BARWe
model correctly if one allows appropriate parametrization.
We applied GMF approximations for a one-dimensional site
restricted lattice model. By allowing the model to reach the
zero branching rate in the ZAM model we showed that the
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site mean-field solution is in agreement with that of the field
theory for this class [17]. Note that this kind of analysis
resulted in similar steady state solutions in the case of an-
other PC class model [11,21], although there the branching
rate cannot be read off explicitly.

The GMF approximations were determined up to N=12
and convergence toward the simulation results were shown.
Using scaling and CAM theory we obtained v, =1.85(3) and
B=0.96(2) critical value estimates matching the best preci-
sion available in the literature for the PC universality class.

ACKNOWLEDGMENTS

The authors acknowledge access to the NIIFI Cluster-
GRID, LCG-GRID, and the Supercomputer Center of Hun-
gary. Support from the Hungarian research fund OTKA
(Grants No. T-046129 and No. T47003) is acknowledged.

[1] J. Marro and R. Dickman, Nonequilibrium Phase Transitions
in Lattice Models (Cambridge University Press, Cambridge,
UK., 1999).

[2] H. Hinrichsen, Adv. Phys. 49, 815 (2000).

[3] G. Odor, Rev. Mod. Phys. 76, 663 (2004).

[4] U. Tduber, Adv. Solid State Phys. 43, 659 (2003).

[5] Z. Racz, in Slow Relaxations and Nonequilibrium Dynamics in
Condensed Matter, edited by J.-L. Barrat, M. V. Feigelman, J.
Kurchan, and J. Dalibard, Proceedings of the Les Houches
Summer School of Theroetical Physics, LXXVII (Springer,
New York, 2002).

[6] S. Lubeck, Int. J. Mod. Phys. B B18, 3977 (2004)

[7] H. Berry, Phys. Rev. E 67, 031907 (2003).

[8] W. Kinzel, in Percolation Structures and Processes, edited by
G. Deutscher, R. Zallen, and J. Adler, Annals of the Israel
Physical Society Vol. 5 (Hilger, Bristol, 1983); H. K. Janssen,
Z. Phys. B: Condens. Matter 42, 151 (1981); P. Grassberger,
ibid. 47, 365 (1982).

[9] P. Grassberger, F. Krause, and T. von der Twer, J. Phys. A 17,
L105 (1984).

[10] N. Menyhdrd, J. Phys. A 27, 6139 (1994).

[11] N. Menyhdrd and G. Odor, J. Phys. A 28, 4505 (1995).

[12] K. E. Bassler and D. A. Browne, Phys. Rev. E 55, 5225
(1997).

[13] H. Hinrichsen, Phys. Rev. E 55, 219 (1997).

[14] H. Takayasu and A. Yu. Tretyakov, Phys. Rev. Lett. 68, 3060
(1992).

[15] D. Zhong and D. ben-Avraham, Phys. Lett. A 209, 333 (1995).

[16] M. H. Kim and H. Park, Phys. Rev. Lett. 73, 2579 (1994).

[17] J. L. Cardy and U. C. Téuber, J. Stat. Phys. 90, 1 (1998).

[18] N. Menyhdrd and G. Odor, Braz. J. Phys. 30, 113 (2000).

[19] O. Al Hammal, H. Chaté, 1. Dornic, and M. A. Mufioz, e-print
cond-mat/0411693.

[20] 1. Jensen, Phys. Rev. E 50, 3623 (1994).

[21] N. Menyhard and G. Odor, J. Phys. A 29, 7739 (1996).

[22] 1. Jensen, J. Phys. A 30, 8471 (1997).

[23] D. Zhong, D. ben-Avraham, and M. A. Mufioz, Eur. Phys. J. B
35, 505 (2003).

[24] G. Odor, Phys. Rev. E 69, 036112 (2004).

[25] G. Odor, Phys. Rev. E 70, 026119 (2004).

[26] G. Odor, Phys. Rev. E 70, 066122 (2004).

[27] H. A. Gutowitz, J. D. Victor, and B. W. Knight, Physica D 28,
18 (1987).

[28] R. Dickman, Phys. Rev. A 38, 2588 (1988).

[29] G. Szabo, A. Szolnoki, and L. Boddcs, Phys. Rev. A 44, 6375
(1990).

[30] A. Szolnoki, Phys. Rev. E 66, 057102 (2002).

[31] G. Odor and A. Szolnoki, Phys. Rev. E 53, 2231 (1996).

[32] A. Szolnoki, e-print cond-mat/0408114.

[33] A. Szolnoki, Phys. Rev. E 62, 7466 (2000).

[34] G. Odor, N. Boccara, and G. Szabé, Phys. Rev. E 48, 3168
(1993).

[35] M. Suzuki and M. Katori, J. Phys. Soc. Jpn. 55, 1 (1986); M.
Suzuki, ibid. 55, 4205 (1986).

[36] G. Odor, Phys. Rev. E 51, 6261 (1995).

[37] G. Odor, Phys. Rev. E 62, R3027 (2000).

[38] G. Odor, Phys. Rev. E 63, 067104 (2001).

[39] Su-Chan Park and Hyunggyu Park, e-print cond-mat/0409115.

[40] 1. Jensen, J. Phys. A 30, 8471 (1997).

066128-5



